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1 The Filtration

Recall that we are interested in the group of homotopy spheres for many reasons. We denote this
group Θn. Recall that there is an isomorphism of groups (see my notes)

π0Diff∂(D
n) ∼= Θn+1

The right hand side admits a natural filtration. First we define

γn+1
(n−i)

..= πiDiff∂(D
n−i)

the superscript denotes the dimension of the homotopy spheres that we are defining a subgroup of
and the subscript denotes the dimension of the disc that we are looking at, or whats the same the
dimension of the sphere that we are pulling back to, more below.

Now it is clear that (tensor-hom adjunction)

γn+1
(n−i) = [Si,Diff∂(D

n−i)] ⊆ [Si,Hom(Dn−i, Dn−i)] ∼= [Si ×Dn−i, Dn−i]

If we had a map Di → Hom(Dn−i, Dn−i) that was the identity on the boundary of Di, that is the
constant map that hits the identity (the basepoint) in Hom(Dn−i, Dn−i), then we can glue it
up to a map Si → Hom(Dn−i, Dn−i) (universal property of quotient). It is clear that all maps
(preserving the base point) will be of this form. Therefore we can represent an element α ∈ γn+1

(n−i) by
a map

Di ×Dn−i → Dn−i

where the condition that it is the identity on the boundary of Di can be translated into saying that on
the boundary of Di×Dn−i it is the projection onto the second factor α(x, y) = y, that is it is constant
on the boundary of the first variable and the thing that it is constant on is the identity map in the
second variable.

Hence we have that

Di ×Dn−i ∼= Di−1 ×D1 ×Dn−i ∼= Di−1 ×Dn−i+1
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while at the same time
Dn−i ι−→ Dn−i ×D1 ∼= Dn−i+1

therefore we can send

Hom
(
Di ×Dn−i, Dn−i

)
→ Hom

(
Di−1 ×Dn−i+1, Dn−i

) ι◦−−−→ Hom
(
Di−1 ×Dn−i+1, Dn−i+1

)
which may be called an ”assembly” map. We are just rearranging the domain and then including the
codomain into a bigger space. Through this proceedure then we have provided a map

λi : γ
n+1
(n−i) → γn+1

(n−i+1)

which can be iterated to create a sequence of groups

γn+1
(0)

=

0

→ γn+1
(1)

=

0

→ γn+1
(2)

=

0

→ γn+1
(3)

=

0

→ γn+1
(4) → · · · → γn+1

(n−i) → γn+1
(n−i+1) → · · · → γn+1

(n) = π0Diff∂(D
n)

This defines a filtration on π0Diff∂(D
n) by looking at the images of these maps, these subgroups we

denote
Γn+1
(n−i)

..= λn−1 ◦ · · · ◦ λi

(
γn+1
(n−i)

)
⊆ π0Diff∂(D

n)

which gives us the so called Gromoll filtration

Γn+1
(0) ⊆ · · · ⊆ Γn+1

(n−1) ⊆ Γn+1
(n) = Θn+1

Note that this also produces a filtration of the other groups πiDiff∂(D
n−i) which by varying the n

value produces a filtration of all the homotopy groups of Diff∂(D
k), for an arbitrary k.

Finally we define the disc of origin: If Σ ∈ Θn+1 then its disc of origin is the minimal d such that
Σ ∈ Γn+1

(d) . We denote this D(Σ) = d.

Lemma. For Σ ∈ Θn+1 we have that
D(Σ) ≤ n− 1

Proof. π0C (Dn) = 0 and putting this in our LES in homotopy groups for the fibration

Diff∂(D
m+1) → C (Dm) → Diff∂(D

m)

implies a surjection between π1Diff∂(D
n−1) → π0Diff∂(D

n).
□

Another way of saying this is that Γn+1
(n) = Γn+1

(n−1).

Remark. Here are some intuitive remarks that may or may not be true, Im not quite sure, on what
pulling back in this filtration means. An isotopy is a path in Diff∂(M), we have seen in our Cerf notes
that this is the same as a diffeomorphism of M × I that commutes with the projection onto the I
factor. Elements of π1Diff∂(M) are in particular paths in Diff∂(M), that start and end at the base
point. Thus an element of π1Diff∂(M) is in particular an isotopy. Now conflating In ∼= Dn we can see
that moving around the I factors in the M × I will allow us to say more. Indeed when we pull back on
the disc it is like going from an isotopy of In−1 × I, that is a diffeomorphism that commutes with the
projection to the second factor, to a diffeomorphism of In−2 × I2 the commutes with the projection
on to the second variable. This is something like the diffeomorphism begin ”flat” or the identity in
more directions.

Remark. The injectivity of this map π1Diff∂(D
n−1) → π0Diff∂(D

n) is of interest and [Wan24] has
provided some cases where it is injective.
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2 Exotic Blobs

Let (A,B) be a pair of closed smooth manifolds, B ⊆ A. Then define

S (A,B) ..=
{
f : M

≃−→ A; rel B
}
/ ∼

that is closed smooth manifolds that are homotopy equivalent to A relative to B, up to some equiv-
alence. The equivalence is that f1 : M1 ∼ f2 : M2 if and only if there is a homtopy commutative
diagram,

M1

A

M2

f1

f2

such that the map M1 → M2 is a diffeomorphism, and when we restrict the diagram to the boundary
it commutes up to isotopy. This is written down in [LM24, Def 11.5]. The relevant space for us is

S∂(D
n+1) ..= S (Dn+1, ∂Dn+1)

because

Lemma ([LM24], Lem 12.6).

Θn+1
∼= S (Sn+1, ∅) ∼= S∂(D

n+1)

Proof. The second iso is just the universal property of the quotient.
The first bijection seems tautological, however there is a subtelty, in the KM definiton of Θ

we need to account for orientations, whilst S does not. By the generalised Poincare conjecture
a homotopy equivalence is a homeomorphism and moreover up to homotopy between a homotopy
sphere and the standard sphere there is exactly two such homeomorphisms (given by the maps of
degree ±1). Therefore given an element in the structure set we can define an orientation on the
domain by pulling back the standard orientation on the sphere. This makes the two maps into two
different oriented structures and therefore preserves the bijection.

□

It is clear that one way to exhibit S∂(D
n+1) is as{

[W ] : W ≃ ∗, ∂W = Sn
}

that is closed smooth manifolds that are contractable and have boundary that is the standard smooth
sphere identified up to boundary preserving (the identity) diffeomorphism. This is the set of (non-
standard name) ”exotic blobs”. These blobs can all be constructed as gluing collars onto the boundary
of standard discs (the proof is the same as the proof for exotic spheres)

We(f)
..= Dn+1 ∪f (I × Sn), f : Sn ∼−→ Sn

It is also clear that if we glue onto the boundary of We(f) along the identity map we get the exotic
sphere that we would have obtained by gluing Dn+1 to itself along f on its boundary.
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Lemma. Let f ∈ Diff∂(D
n) then we may construct

Wf
..= [0, 1/2]×Dn ∪f [1/2, 1]×Dn

by identifying Dn × {1/2} along f . We claim that

[Wf ] = [We(f)] ∈ S∂(D
n+1)

Proof. We have intuitively drawn the diffeomorphism below, anything more would be too
painfully explicit. Because really the two manifolds we have defined We(f),Wf are not naturally
given with homotopies to the standard disc, we are free to choose them such that they commute
trivially in the diagram, namely pick one for the first and then pull it back along the diffeomorphism
to give the second. By doing this the diagram commutes strictly and hence also on its boundary.
This is sufficient for our purposes. □

The key observation is that if we take a homotopy sphere and cut out a disc, say to for the connected
sum then what we are left with is exactly We(f).

Remark. Note that all discs are diffeomorphic, the point here is whether or not that diffeomorphism
is the identity on the boundary.

3 The Geometry of the Filtration

Here are some results and a conjecture that give a geometric description of what this filtration means
for the homotopy spheres.

Lemma. If Σ ∈ Γn+1
(n−i) then there exists a fibration

Sn−i → Σ♯(Sn−i × Si+1) → Si+1.
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Proof. Consider an element ξ ∈ πiDiff∂(D
n−i) which corresponds under the Gromoll assebly

maps to Σ ∈ Γn+1
(n−i). Then just as in the proof for the bijection of π0Diff∂(D

n) ∼= π0Diff(Sn) we

can extend pointwise the image of the map [Si,Diff∂(D
n−i)] by the identity to get a map of the

sphere, thus defining a map

[Si,Diff∂(D
n−i)]

[Si,extend by the identity]−−−−−−−−−−−−−−−−−→ [Si,Diff(Sn−i)]

Let σ ∈ πiDiff(Sn−i) correspond to ξ under this map. Then we can form a bundle from σ by
clutching. First we want the domain of σ to represent the boundary of the manifold that we will
glue, so here we will clearly choose Di+1, and then because we are getting diffeomorphisms of Sn−i

this should be the fibers of the bundle. Thus we get a priori a bundle

Sn−i → Eσ → Di+1 ∪Di+1 = Si+1.

Now our goal is to exibit this total space as diffeomorphic to a connected sum. First we will
examine the connected sum pictorially in low dimensions for some intuition. These statements
might not be strictly true. Consider i = 0, n = 1. Then the bundle is given by two maps from the
point to Diff∂(D

1), but because it is pointed maps one is the identity. Thus we can consider the
total space as a cylinder with the gluing instructions telling us how to stick the two ends together
(we have circles at every point on a one dimensional line, this is a cylinder, we have two copies but
one of the ends is glued by the identity). This agrees with the idea that the total space should be
§1 × S1 with some homotopy sphere connected. Now the way to connect the homotopy sphere, up
to diffeomorphisms is illustrated in this example. Fist we connect sum, then we flatten the sphere
down a bit, then we identify it with a peice coming from the gluing up of the bundle

More generally we would like to think of some pair of Dn+1’s (the blue bubbles in the final
image) existing in the total space of the bundle, before gluing up, that then have parts of their
boundary identified along the gluing map, which is precisely gluing together the homotopy sphere
Σ. To make this more precise consider that Eσ must be given by

Eσ =
(
Sn−i ×Di+1

)
∪σ

(
Sn−i ×Di+1

)
and the gluing is an identification (where in the second component it is the identity, this is similar
to the situtaion in our Cerf notes, a path is the same as a map into the product on both sides, where
the product is the identity map)

σ :
(
Sn−i × ∂Di+1

)
→

(
Sn−i × ∂Di+1

)
But σ comes from a map on the disc that is the identity near the boundary and so we can think of
it on the boundary as

ξ :
(
Dn−i × ∂Di+1

)
→

(
Dn−i × ∂Di+1

)
where it is the identity near the boundary of Dn−i (the boundary is the parameter and the Dn−i

is the fiber). We can also assume that the parameter is the identity on ”the zero section”, that is
because the homotopy class is pointed maps we know that at the base point they take the identity
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and moreover we can assume this in a nieghbournhood of the identity. Thus we can again assume
that σ is of the form

ξ′ :
(
Dn−i ×Di

)
→

(
Dn−i ×Di

)
such that it is the identity on the boundary of both the Dm components. Now in a collar neigh-
bourhood of this boundary we are gluing

D1 ×Dn−i ×Di ∼= Dn+1

to itself along the Dn−i×Di ∼= Dn component. This Dn is just the Sn that we glue up to homotopy
sphere that has been punctured (or extended by the identity).

□

Proof. Using the language of the previous section it is clear that our construction above
produces the discWf in the total space of the bundle. Then this is the same as the collar construction
which is the same as the exotic sphere with a standard disc cut out.

Remark. Again we can see here that pulling back in the filtration means that you can be attained
from some We(f), where this twisted disc has some extra structure. Namely it is given by gluing two
Dn+1’s but the fibers are twisting, not the base space Di.

4 A Converse

Given an n+ 1 manifold its Inertia group is defined as

I(M) = {Σ ∈ Θn+1 : M♯Σ ∼= M}

those are the homotopy spheres that sort of act trivially on the manifold. This could be frased as the
stabiliser of the element M (say as an element of the set of smooth n+ 1 manifolds) under the action
of the group of homotopy spheres given by connect sum.

Lemma ([Sch], [Sap69], [Lev70]). For all p, q the inertia group of Sp × Sq is trivial.

This implies that the fibration above is non-trivial for all non-standard homotopy spheres (not the
standard smooth structure) and that moreover the diffeomorphism type of the homotopy sphere is
determined by the diffeomorphism type of this bundle, this is because if

Σ1♯
(
Sn−i × Si+1

) ∼= Σ2♯
(
Sn−i × Si+1

)
then using the group structure on the group of homotopy spheres then we get

Σ−1
2 ♯Σ1♯

(
Sn−i × Si+1

) ∼= (
Sn−i × Si+1

)
but because the intertial group is trivial this means that

Σ−1
2 ♯Σ1

∼= 1

or in other words the two homotopy spheres are diffeomorphic. Note that we can perform these connect
sums away from any exotic structure so this is all fine (the group structure on the group of homotopy
spheres can sort of take place independent of the fact that there is a big product of spheres sitting
there).

Conjecture 1. If there exists a fibration

Sn−i → Σ♯(Sn−i × Si+1) → Si+1

and some obstructions on the normal bundle Schang-Levine-Skarba... vanish then Σ ∈ Γn+1
(n−i).
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We now have this in a stable range. Lets get some lemmas down first.

Lemma ([ABK72], Lemma 1.1.5, or here.).

πiDiff(Sn) = πi

(
SOn+1 ×Diff∂(D

n−i)
)

Now we are interested in sphere bundles over a sphere, all bundles over the sphere will come from
clutching relevant bundles over the disc. Thus we are dealing with a bundle

Eξ = (Di+1 × Sn−i) ∪ξ (D
i+1 × Sn−i)

where ξ : ∂Di+1 → Diff(Sn−i) ∈ πiDiff(Sn−i). We can use the universal property of the product to
rewrite ξ as

ξ = σ × γ ∈ πi SOn−i+1 ⊕πiDiff∂(D
n−i)

Lemma. If σ ̸= 0 and i << n (we are in the stable range of πi SOn−i+1) then TEξ is stably non-trivial.

Consider the vector bundle Eσ → Si+1 associated with the clutching function σ. First we claim
that TEξ is stably isomorphic to π∗Eσ, where Eξ

π−→ Si+1 is the bundle map.

Next Eσ has an associated sphere bundle given by the unit length vectors in the fibers, SEσ
ω−→ Si+1.

Then Diarmuid claims (in a paper and to me) that there is a stable isomorophism of bundles

T (SEσ) ≃ ω∗T (Si+1)⊕ ω∗Eσ

Now according to [KM63, Thm 3.1] all homotopy spheres have a stably trivial tangent bundle, and so
we have stable isomorphism

T (SEσ) ≃ ω∗Rm ⊕ ω∗Eσ ≃ ω∗Eσ

The situation is summarised in the following commuting diagram

π∗Eσ ≃ TEξ Eσ T (SEσ) ≃ ω∗Eσ

Eξ Si+1 SEσ

π∗ ω∗

π ω

Now in the case that γ = 0 then it is clear from the construction of Eξ and SEσ as clutched vector
bundles that they are the same bundle. Hence we can conclude that

π∗Eσ ≃ TEξ ≃ T (SEσ) ≃ ω∗Eσ

stably as bundles over Eξ = SEσ. Is one of these things obviously stably non-trivial? I think the point
is merely that this is how you might prove the first statement? If we are in the stable range the it is
clear that Eσ itself is non-trivial and therefore stably non-trivial, because σ ̸= 0 ∈ πjSO. So what we
need to show is that pulling back an unstable bundle is unstable.

Proof. Consider the vector bundle Eσ → Si+1 associated with the clutching function σ. First
we claim that TEξ is stably isomorphic to π∗Eσ, where Eξ

π−→ Si+1 is the bundle map.
Looking then at Eσ it is given by an element σ ∈ πi SO(n − i + 1), by the hypothesis that we

are in the stable range however there is an isomorphism between πi SO(n − i + 1) and πi SO and
therefore σ is non-zero in πi SO, these elements clasify stable bundles and therefore Eσ is stably
non-trivial.

Pulling back defines a map from bundles over Si+1 to bundles over Eξ, or in KO theory

KO(Si+1)
K(π)−−−→ KO(Eξ)

7

https://math.stackexchange.com/questions/2965261/homotopy-type-of-the-diffeomorphism-group-of-the-sphere
https://ncatlab.org/nlab/show/sphere+fiber+bundle#Milnor1956


and what remains to see is that this map preserves the non-triviality of Eσ. What this amounts to
is requiring this map to be injective, as we are saying that a non-zero element goes to a non-zero
element.

Because we are in the stable range we know that the bundle Eσ has a section (the dimension of
the fiber is greater than the base), i.e. there exists a map r : Si+1 → Eσ such that π ◦ r = idSi+1 .
On K theory then we get a left inverse to K(π)

K(Si+1) K(Eξ)id=K(π◦r)
K(π)

K(r)

Therefore we conclude that the map on K theory is an injection and we get that the stably non-trivial
bundle Eσ pulls back to something stably non-trivial.

Crucially this proof relies on being in the stable range. If we were not in the stable range then
we would loose two things, the fact that the bundle Eσ is necissarily stably non-trivial and the fact
that we have a section. Note that this implies that outside the stable range stable triviallity is not
a sufficient invariant, it does not show that the converse of the lemma doesnt hold. Thus it is still
possible at this point to hope for an unconditional converse.

Lemma. T
(
Σ♯(Sn−i × Si+1)

)
is stably trivial when Σ ∈ Θn+1.

Proof. According to [GK19, Lem 2.1] for connected sums we have a stable isomorphism

T (M♯N) ≃ T (M)⊕ T (N)

and hence in our case we get that

T
(
Σ♯(Sn−i × Si+1)

)
≃ T (Σ)⊕ T (Sn−i × Si+1) ≃ T (Σ)⊕ T (Sn−i)⊕ T (Si+1)

which is the direct sum of three stably trivial bundles by [KM63, Thm 3.1] and hence itself stably
trivial. □

I think D. was having something in mind about the derivative map in order to show this. Together
these two imply the following

Theorem. If Σ ∈ Θn+1, i << n (we are in the stable range of πi SOn−i+1) and there is a fibration

Sn−i → Σ♯(Sn−i × Si+1) → Si+1

then Σ ∈ Γn+1
(n−i).

Proof. Denote the total space Eξ = Σ♯(Sn−i × Si+1) for ξ = σ × γ as above. Then by the
second lemma Eξ is stably trivial. Then by the (contrapositive of the) first lemma σ = 0. Thus we
conclude that the bundle is glued together using only the γ diffeomorphism, in exactly the way we
discussed in the converse. In particular take γ, map it to a homotopy sphere under the Gromoll
map and then applying the proof of the converse and the uniqueness of the diffeomorphism type
of the bundle we conclude that Eξ is diffeomorphic to the bundle constructed in the proof of the
converse. □
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